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Abstract

The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean, spread and
forecast probabilities, and how these biases propagate to streamflow ensemble forecasts. The forcing ensembles are
subsequently post-processed to reduce bias and increase skill, and to investigate whether this leads to improved streamflow
ensemble forecasts. Multiple post-processing techniques are used: quantile-to-quantile transform, linear regression with
an assumption of bivariate normality and logistic regression. Both the raw and post-processed ensembles are run through
a hydrologic model of the river Rhine to create streamflow ensembles. The results are compared using multiple verification
metrics and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked probability
skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles is performed at multiple
spatial scales: relatively small headwater basins, large tributaries and the Rhine outlet at Lobith. The streamflow
ensembles are verified against simulated streamflow, in order to isolate the effects of biases in the forcing ensembles and
any improvements therein. The results indicate that the forcing ensembles contain significant biases, and that these
cascade to the streamflow ensembles. Some of the bias in the forcing ensembles is unconditional in nature; this was
resolved by a simple quantile-to-quantile transform. Improvements in conditional bias and skill of the forcing ensembles
vary with forecast lead time, amount, and spatial scale, but are generally moderate. The translation to streamflow
forecast skill is further muted, and several explanations are considered, including limitations in the modelling of the
space-time covariability of the forcing ensembles and the presence of storages.
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1. Introduction

Hydrologic forecasts are inherently uncertain. Uncer-
tainties originate from the forcing data and from the ini-
tial conditions, the model structure and its parameters.
Estimating the uncertainties in hydrologic forecasts yields
probabilistic forecasts that form one input to risk-based
decision making. While “best practice” for using these
probabilistic forecasts attracts ongoing debate, there is
good evidence to suggest that probabilistic forecasts could
improve decision-making if used appropriately (e.g. Krzysz-
tofowicz, 2001; Raiffa and Schlaifer, 1961; Ramos et al.,
2012; Todini, 2004; Verkade and Werner, 2011).

Hydrologic models are often forced with the output
from numerical weather prediction (NWP) models. As hy-
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drologic models are sensitive to the forcing inputs, and me-
teorological forecasts often contain significant biases and
uncertainties, the forcing data is typically an important
source of bias and uncertainty in streamflow forecasting.
Meteorological ensemble prediction systems (EPS) are in-
creasingly used in hydrologic prediction (see, for example,
Cloke and Pappenberger 2009 for an overview of ensem-
ble use in flood forecasting). Examples of meteorological
EPS include the National Centers for Environmental Pre-
diction’s Global Ensemble Forecast System (GEFS; Hamill
and Whitaker 2006), the UK Met Office’s Global and Re-
gional Ensemble Prediction System (MOGREPS; Bowler
et al. 2008; Schellekens et al. 2011) and the European Cen-
tre for Medium-Range Weather Forecasts’ Ensemble Pre-
diction System (ECMWF-EPS; Buizza et al. 2007).

Due to limitations of the models and associated data,
forecasts from meteorological EPS generally contain biases
in the mean, spread and higher moments of their fore-
cast distributions. These biases are manifest at temporal
and spatial scales that are relevant to hydrologic predic-
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tion. The information content in the raw forcing may con-
tain valuable information for post-processing. A variety of
techniques may be used for this, including techniques that
use single-valued predictors, such as the ensemble mean of
the forcing forecast (e.g. Kelly and Krzysztofowicz, 2000;
Reggiani and Weerts, 2008b; Zhao et al., 2011), and tech-
niques that use additional moments or all ensemble mem-
bers, as well as auxiliary variables.

Biases in forcing ensembles propagate through the hy-
dro-meteorological system and may, therefore, introduce
biases into the streamflow predictions. Biases in stream-
flow forecasts are often removed through statistical post-
processing1 where, based on the historical performance of
the forecasting system, operational streamflow forecasts
are statistically corrected in real-time (e.g. Bogner and
Pappenberger, 2011; Brown and Seo, 2013; Krzysztofo-
wicz, 1999; Reggiani and Weerts, 2008a; Todini, 2008; Weerts
et al., 2011). This correction may lump together the hy-
drologic and meteorological uncertainties or factor them
separately (Brown and Seo, 2013). The two sources of un-
certainty are lumped together by calibrating the stream-
flow post-processor on observed streamflow. The hydro-
logic uncertainties are factored out by calibrating the stream-
flow post-processor on simulated streamflow, i.e. on stream-
flow predictions with observed forcing (Seo et al., 2006;
Zhao et al., 2011). In both cases, the streamflow forecasts
may benefit from post-processing of the forcing forecasts.
However, in separately accounting for the hydrologic un-
certainties (the first case), it is assumed that the meteoro-
logical uncertainties and biases have been adequately ad-
dressed. In contrast, corrections to the streamflow should
indirectly account for the meteorological biases and un-
certainties if the forcing and hydrologic uncertainties are
lumped together into a streamflow postprocessor.

Important questions remain about the combined bene-
fits of forcing and streamflow post-processing in this con-
text. For example, lumping together the forcing and stream-
flow uncertainties may lead to strongly heterogeneous be-
haviours that are difficult to model statistically. How-
ever, post-processing of forcing forecasts is generally com-
plex and resource intensive, requiring statistical models of
temporal, spatial and cross-variable relationships to which
streamflow is often sensitive and for which sample sizes
may be limited; in short, forcing bias correction may leave
substantial residual biases and invoke imperfect models of
space-time covariability.

Indeed, initial attempts to address this issue have been
reported in the scientific literature. Kang et al. (2010) fo-
cused on the reduction of uncertainties by applying post-

1 In this paper, we use the term post-processing to indicate re-
duction of biases and/or estimation of uncertainties using statistical
techniques that are applied subsequently to a model run. As such,
post-processing is synonymous with bias-correction, forecast calibra-
tion, statistically correcting, and preprocessing. In hydrology, the
term preprocessing is sometimes used to indicate the post-process-
ing of meteorological forcings prior to being used in a hydrologic
model.

processing to predicted forcings, to predicted streamflow
and both. In their study, post-processed ensemble mem-
bers were re-ordered using the Schaake Shuffle prior to be-
ing used in the hydrologic and hydrodynamic models. The
Schaake Shuffle aims to capture spatio-temporal patterns
in the observed meteorological forcings that are lost fol-
lowing post-processing of the marginal distributions. The
authors found that the forecasts were most skillful when
combining post-processing of the forcings with post-pro-
cessing of the streamflow forecasts. However, they also
note that post-processing of the streamflow forecasts more
effectively reduced the total uncertainty than post-process-
ing the forcings alone. Clearly, this will depend on the
relative importance of the forcing and hydrologic uncer-
tainties in any given basin.

Zalachori et al. (2012) compared the skill of, and biases,
in ensemble streamflow forecasts that were produced us-
ing different combinations of forcing and streamflow post-
processing. Post-processing of meteorological forcings was
performed by dressing the ensemble members with 50 ana-
log scenarios that naturally included appropriate space-
time relationships. They found that, while post-process-
ing the forcings increased the skill of the forcing ensembles,
there was little improvement in the skill of the streamflow
ensembles. Also, those improvements were obscured by
the effect of streamflow post-processing.

Similarly,Yuan and Wood (2012) explored the benefits
of post-processing of forcing ensembles versus post-pro-
cessing of streamflow ensembles, but in a different context,
namely that of seasonal forecasting. They found that both
post-processing of forcings and post-processing of stream-
flow adds skill, and when techniques are combined, skill is
highest.

Several techniques have been proposed for reducing
bias in forcing forecasts (Hamill, 2012). These techniques
use past forecasts and observations (and possibly auxil-
iary variables) to estimate the parameters of a statistical
model that is subsequently applied in real-time to esti-
mate the “true” (unbiased) probability distribution of the
forecast variable, conditionally upon the raw forecast (and
any other predictors). Techniques include linear regres-
sion with an assumption of joint normality (e.g. Gneiting
et al., 2005; Hagedorn et al., 2008; Wilks, 2006), logistic
regression (Hamill et al., 2008; Wilks, 2006), quantile re-
gression (Bremnes, 2004) and indicator co-Kriging (Brown
and Seo, 2010, 2013), among others. Unsurprisingly, Wilks
and Hamill (2007) conclude that no single post-processing
technique is optimal for all applications.

Statistical correction of numerical weather forecasts re-
quires a long historical record of forecasts and observa-
tions, from which the joint distribution can be estimated
with reasonably small sampling uncertainty and bias. Un-
less explicitly accounting for non-stationarity with addi-
tional model parameters, the joint distribution should be
relatively homogeneous in time. Forecasting systems, how-
ever, generally improve over time, rendering archived op-
erational forecasts inhomogeneous. In contrast, weather
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forecasts that are retrospectively generated with a fixed
numerical model (“reforecasts” or “hindcasts”), provide
a reasonable platform for statistically correcting weather
forecasts (Hamill et al., 2006). Available reforecast datasets
include the ECMWF-EPS (Hagedorn, 2008), GFS (Hage-
dorn et al., 2008; Hamill and Whitaker, 2006; Hamill et al.,
2008), and the more recent GEFS, for which hindcasts
were recently completed (Hamill et al., 2013) and TIGGE
(Hamill, 2012).

The extent to which the skill of, and biases in, stream-
flow forecasts can be improved through post-processing of
the forcing ensembles, separately or together with stream-
flow post-processing, is an ongoing question and the focus
of this paper. For example, these issues must be explored
in basins with different hydrologic characteristics and for
which the total uncertainties comprise different contribu-
tions from the meteorologic and hydrologic uncertainties,
including a mixture of headwater and downstream basins.
First, we evaluate the biases in the forcing ensembles at
the scales used to force the hydrologic models, and how
these biases translate into the streamflow ensemble fore-
casts. Secondly, a number of bias-correction techniques are
applied to the temperature and precipitation ensembles.
The post-processed forcing ensembles are used to drive
the hydrologic models, which are then evaluated for any
reduction in bias and increase in skill associated with the
forcing post-processing. These post-processing techniques
include the unconditional quantile-to-quantile transform
(a correction to the forecast climatology) as well as condi-
tional techniques such as linear regression in the bivariate
normal framework and logistic regression. The streamflow
ensembles are evaluated at multiple spatial scales and, cru-
cially, by verifying against simulated streamflows (predic-
tions made with observed forcings), in order to isolate the
contribution of the forcing biases and uncertainties to the
streamflow forecasts.

The structure of the manuscript is as follows. The Ma-
terials and Methods section describes (i) the techniques
that have been used for post-processing of forcing ensem-
bles, (ii) the study basin, (iii) the models and data that are
used and (iv) a detailed setup of the different experiments.
The results are presented in (Section 3) and subsequently
discussed in (Section 4). Finally, some conclusions are
drawn together with suggestions for future studies (Sec-
tion 5).

2. Materials and Methods

2.1. Post-processing techniques

Several techniques were used to post-process the tem-
perature and precipitation ensembles. Temperature en-
semble forecasts were post-processed using the quantile-
to-quantile transform and, separately, using linear regres-
sion. For precipitation, the quantile-to-quantile transform
was used, as well as logistic regression. A brief description
of each technique is provided below; more details can be
found in AppendixA.

The quantile-to-quantile transform (QQT, sometimes
also called Quantile Mapping or cdf-matching, e.g. Brown
and Seo 2013; Hashino et al. 2007; Madadgar et al. 2012;
Wood et al. 2002) is an unconditional technique insofar as
the unconditional climatology of the forecasts is re-mapped
to the unconditional climatology of the observations. QQT
is not expected to provide post-processed ensembles that
are equally skilful as those resulting from a conditional
correction. However, the skill of a conditional correction
may largely stem from an improvement in forecast clima-
tology and an unconditional correction provides a valuable
baseline for a more complex, conditional correction.

The conditional post-processing techniques are often
applied in similar ways. For each of the forcing variables,
the post-processor is configured for each lead time and
each location (basin-averaged quantity) separately. A dis-
tribution of the predictand Y (observed temperature or
precipitation) is sought, conditional upon a vector of pre-
dictors X = X1, . . . , Xm. In this case, the predictors com-
prise the five (possibly biased) ensemble members of the
raw forecast.

For post-processing temperature ensemble predictions,
the observed and forecast temperatures are frequently as-
sumed joint normally distributed. Linear regression is then
used to estimate the mean and spread (and hence full prob-
ability distribution) of the observed variable conditionally
upon the predictors (Gneiting et al., 2005; Hagedorn et al.,
2008; Wilks, 2006).

Predictive distributions of precipitation are non-Gaus-
sian (e.g. Hamill et al., 2008), and threshold-based or “non-
parametric” techniques are often applied, although a meta-
Gaussian approach is also possible (Wu et al., 2011). Pre-
cipitation forecasts are often biased conditionally upon ob-
served precipitation amount (a so-called Type-II condi-
tional bias), with overestimation of smaller observed pre-
cipitation and underestimation of larger observed precip-
itation. These amounts are typically important for prac-
tical applications of hydrologic forecasts (e.g. for drought
and flood forecasting; see Brown and Seo 2013). Logis-
tic regression is a common approach for post-processing
of precipitation forecasts and is known to perform reason-
ably well in a variety of contexts (e.g. Hamill et al., 2008;
Schmeits and Kok, 2010; Wilks, 2006). The technique in-
volves estimating the probability of not-exceeding several
discrete thresholds, for which the parameters of the logistic
regression may be estimated separately at each threshold
(standard logistic regression) or fixed across all thresholds
(Wilks, 2009). In estimating the parameters separately at
each threshold, the cumulative probabilities are not guar-
anteed to be valid in combination, and some post-correc-
tion smoothing is typically required.

A potential problem with statistically post-processing
temperature and precipitation forecasts separately at each
of multiple forecast lead times and locations is that space-
time covariability is not adequately captured. For hydro-
logic applications, the space-time covariability of the forc-
ing is important as the hydrologic model integrates the
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forcing both in time and in space (Clark et al., 2004).
In order to introduce appropriate space-time covari-

ability into the post-processed forcing ensembles, the so-
called “Schaake shuffle” was used here (Clark et al., 2004).
For each ensemble trace, a corresponding observed time-se-
ries was obtained from the same start date in a randomly
chosen historical year. The ensemble members at each
forecast lead time were then assigned the same rank posi-
tions as the observations from the corresponding (relative)
times in their associated historical years. The Schaake
shuffle introduces (observed) rank correlations to the fore-
cast ensemble members on the basis that spatial and tem-
poral covariability will lead to ensemble members at nearby
locations and proximate times having similar ranks within
their own probability distributions. The Schaake shuf-
fle does not, however, capture this space-time covariabil-
ity conditionally upon the state of the atmosphere at the
forecast issue time. Rather, it introduces space-time co-
variability conditionally upon forecast issue date alone (as
formulated in Clark et al. 2004). Clearly, other imple-
mentations are possible, such as preservation of the rank
order-relations in the raw forecasts.

2.2. Study basin: Rhine

The river Rhine runs from the Swiss Alps along the
French-German border, through Germany and enters the
Netherlands near Lobith, which is often considered the
outflow. At Lobith, the basin area equals approx. 160,000 km2.
Snow and snowmelt have a large effect on the river Rhine’s
temporal streamflow patterns. During spring and early
summer, more than half of the river’s flow at the out-
let originates from snowmelt in the Swiss Alps. Figure 1
shows the basin location, elevations and the gauged outlets
of tributaries that were used in this study; the three dif-
ferent symbols used for the gauging stations coincide with
the three spatial scales used in the analysis.

Clearly, the quality of the streamflow predictions at
downstream locations is affected by the quality of the stream-
flow predictions at upstream locations. Ensemble stream-
flow predictions are therefore analysed at three spatial
scales: (i) 43 outlets of basins that each have a contribut-
ing area of less than 2500 km2; in the remainder of this
manuscript, these are referred to as headwater basins (ii)
four outlets of relatively large Rhine tributaries: the Main,
Moselle, Neckar and Swiss Rhine, and (iii) the outlet of
the river Rhine, at Lobith. Some summary statistics of
the magnitudes of the contributing areas of these outlets
are shown in Table 1.

Figure 2 shows the non-exceedence climatological prob-
abilities of observed daily mean temperature, daily total
precipitation and daily averaged streamflow for the three
spatial scales used in the analysis. Both the “tributaries”
and the “headwater” scales comprise of multiple outlets
(four and 43 respectively). For these scales, the thick line
designates the median location, and the thin lines desig-
nate the 10th and 90th percentiles. In the case of the four

main tributaries, determining the quantiles required linear
interpolation between four available data points.

Determination of temperature and precipitation at larger
spatial scales has a modulating effect on extreme values of
temperature and precipitation. The relatively fat tail of
precipitation over the four tributaries originates from rel-
atively high precipitation levels over the Swiss Rhine. As
none of the headwater basins considered are located in that
tributary basin, this fat tail is not observed in the curve
for the smaller, headwater basins.

2.3. Models and data

For the temporal and areal aggregation of ensemble
forcing forecasts and corresponding observations, and for
retrospective generation of streamflow predictions, a Delft-
FEWS forecast production system (Werner et al., 2012)
was used. The system is an adapted version of the forecast
production system FEWS Rivers, which is used by the Wa-
ter Management Centre of the Netherlands for real-time
forecasting of streamflow and water levels in the Rhine and
Meuse rivers.

The system contains an implementation of the HBV
rainfall-runoff model (Bergström and Singh, 1995). This
is a semi-lumped, conceptual hydrologic model, which in-
cludes a routing procedure of the Muskingum type. The
model schematisation consists of 134 sub-basins jointly
covering the entire Rhine basin. The model runs at a
daily time step. Inputs to the model consist of temper-
ature and precipitation forcings; actual evaporation is es-
timated from a fixed annual profile that is corrected using
temperature forecasts.

The forecasting system runs in two operating modes:
historical and forecast mode. In historical mode, the hy-
drologic models are forced with meteorological observa-
tions for a period leading up to the forecast issue time.
This ensures that the internal model states reflect the ac-
tual initial conditions of the basin as closely as possible.
In forecast mode, these model states are the starting point
for the model run, where the models are now forced by nu-
merical weather predictions.

For observations of precipitation, the CHR08 dataset
was used. This dataset covers the period 1961 through
2007. The CHR08 dataset was prepared specifically for
the HBV model used here (Photiadou et al., 2011). The
spatial scale of these CHR08 observations coincides with
the 134 sub-basins used in the HBV model schematisation
for the Rhine basin. Temperature observations originate
from version 5.0 of the E-OBS data set; these were avail-
able from 1951 through mid 2011 (Haylock et al., 2008).
Both precipitation and temperature data were available at
a daily time step.

The ECMWF reforecast dataset, comprising medium-
range EPS forecasts with 5 ensemble members (Hagedorn,
2008), was used for retrospective predictions of tempera-
ture and precipitation. At ECMWF, a retrospective fore-
cast is produced every week for the same date in the 18
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years preceding the current year, using the current opera-
tional model. To illustrate, on March 13, 2009, reforecasts
were produced with initial conditions of March 13, 1991,
March 13, 1992, and so forth until March 13, 2008. The
reforecasts are produced using the operational model (cur-
rently Cy38r1 with a T639 horizontal resolution, i.e. 0.25
degrees in either direction). The set of reforecasts was
thus produced using an operational model which, since
the inception of the reforecasting scheme, has changed
only slightly. This has little or no effect on the hydrologic
model outcomes though, as was shown by Pappenberger
et al. (2011). By July 2011, over 3,100 retrospective fore-
casts were available for use in the present study. While
the forecast horizon extends to 30 days at a six hour time
steps, for the present study only the first 10 days were
available. Forecasts were temporally aggregated to a daily
time step to match the time step used by the hydrologic
model. The gridded forecasts were spatially averaged to
the HBV sub basin scale.

Hourly streamflow observations for hydrologic stations
within the Rhine basin were obtained from the Water Man-
agement Centre of the Netherlands. These observations
were temporally aggregated to daily averages.

2.4. Experiment

Streamflow forecasts were produced with raw and post-
processed forcings and verified against simulated stream-
flow, in order to establish the contribution of the forcing
post-processing to the streamflow forecasts independently
of any biases in the hydrologic model.

The baseline scenario comprised no post-processing of
the forcing ensembles. Raw ensemble predictions of precip-
itation and temperature were used to generate streamflow
ensemble predictions. In subsequent cases, temperature
and precipitation ensemble predictions were statistically
corrected using the techniques described in Section 2.1.
These post-processed forcing ensemble predictions were
then used to generate streamflow ensemble predictions.
Thus, three cases were considered (Table 2): a baseline
case, a case where an unconditional quantile-to-quantile
transform (QQT) was applied to each variable (Case 1),
and a case in which the forcing ensemble predictions were
corrected using conditional techniques (Case 2). In terms
of the latter, temperature ensemble predictions were sta-
tistically corrected using linear regression in the bivariate
normal framework (LIN) and precipitation ensemble pre-
dictions were corrected using logistic regression (LOG).
Variants of these two techniques were also considered, but
not adopted. Specifically, for temperature, the assump-
tion of homogeneous spread of the post-processed ensem-
bles was relaxed to allow for a linear dependence on the
raw ensemble spread (Gneiting et al., 2005), but without
discernible benefits. For precipitation, a variant of LOG
involving homogeneous parameters across all thresholds
(Wilks, 2009) was evaluated, but this incurred an appre-
ciable loss of skill.

2.5. Post-processing strategy

The parameters of any post-processor must be esti-
mated with sample data. Both ensemble predictions and
verifying observations were available for the period 1991–
2007. This amounted to roughly 2,920 pairs of forecasts
and observations at each forecast lead time. These pairs
were not evenly distributed over the period of record due
to the reforecasting procedure adopted by ECMWF.

The forcing ensembles were post-processed using the
approaches described in Section 2.1 and AppendixA. Post-
processing was performed separately for each of the 10
forecast lead times and 134 subbasins. Spatio-temporal
covariability was then introduced via the Schaake Shuffle
(Section 2.1). The post-processing was conducted within
a cross-validation framework whereby separate periods of
record were used to estimate the model parameters and
independently verify the post-processed forecasts. Specif-
ically, a leave-one-year-out cross-validation approach was
adopted. This led to 17 separate calibrations of each post-
processor, each comprising 16 years of calibration data and
one year of independent prediction. The 17 years of inde-
pendent predictions were then collated, verified, and used
to force the streamflow models.

2.6. Verification strategy

The verification strategy focused on identifying the skill
and biases in the forcing ensembles, as well as in the stream-
flow ensembles generated using these forcings. Skill and
bias were identified with five well-known verification met-
rics. The correlation coefficient and the Relative Mean
Error (RME) are measures of, respectively, the linear as-
sociation of the forecast ensemble mean and observations
and the relative bias of the ensemble mean. The (half)
Brier Score (BS), the mean Continuous Ranked Probabil-
ity Score (CRPS) and the area under the Relative Op-
erating Characteristic (ROC) curve measure different at-
tributes of the probabilistic quality of the forecasts. A
short description of the latter scores is provided below,
with accompanying equations given in AppendixB. Verifi-
cation was performed with the Ensemble Verification Sys-
tem (Brown et al., 2010). The data that constituted in-
put for verification, is posted to an online data repository
(Verkade et al., 2013).

The Brier Score (Brier, 1950; Murphy, 1973; Wilks,
2001) measures the average square error of a probabilis-
tic forecast of a discrete event. The mean CRPS (Hers-
bach, 2000; Stanski et al., 1989) is an integral measure of
(square) probabilistic error in the forecasts across all possi-
ble discrete events. Both the BS and CRPS may be decom-
posed into further attributes of forecast quality by condi-
tioning on the forecast variable (the calibration-refinement
factorization). In addition, the BS may be decomposed by
conditioning on the verifying observation (the likelihood-
base-rate factorization). The area under the ROC curve
(AUC) is a measure of event discrimination; that is, the
ability of the forecasts to adequately discriminate between
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the exceedence and non-exceedence of a discrete threshold,
such as the flood threshold.

Skill scores provide a convenient method for summa-
rizing an improvement (or reduction) in forecast quality
over a wide range of basins and conditions, as they are
normalized measures. Here, both the BS and CRPS are
formulated as skill scores with sample climatology as the
baseline. These scores are denoted by the Brier Skill Score
(BSS) and the Continuous Ranked Probability Skill Score
(CRPSS), respectively. Rather than using the raw ensem-
bles as the reference forecast, the scores are shown for
the raw and post-processed ensembles with a consistent
baseline, namely sample climatology. Likewise, the ROC
Score (ROCS) comprises the AUC of the main forecast-
ing system normalized by the AUC of the climatological
forecast, i.e. 0.5 (AppendixB). This allows for the rela-
tive improvement of the forcing and streamflow forecasts
to be identified in the context of background skill. How-
ever, some care is needed with interpretation, as sample
climatology is unconditional and, therefore, increasingly
(conditionally) biased towards the tails.

Conditional quality and skill was determined by calcu-
lating verification metrics for increasing levels of the non-
exceedence climatological probability P , ranging from 0 to
1 (except for the BSS and ROCS, which are event skills
and are, therefore, unknown for thresholds corresponding
to the extremes of the observed data sample, nominally
denoted by P = 0 and P = 1). Essentially, P = 0 con-
stitutes an unconditional verification for continuous mea-
sures, such as the CRPSS, as all available data pairs are
considered (Bradley and Schwartz, 2011), and is unde-
fined for discrete measures, such as the BS. Conversely,
at P = 0.99 , only the data pairs with observations falling
in the top 1% of sample climatology are considered; this
amounts to approx. 30 pairs here. While the sampling
uncertainties of the verification metrics were not explic-
itly evaluated here (see Brown and Seo, 2013), the results
were not interpreted for thresholds larger than the 0.99
climatological probability or v 30 pairs.

3. Results

The results are presented in three subsections, each co-
inciding with one of the variables considered: temperature,
precipitation and streamflow. Within those subsections, a
discussion of the baseline case is followed by a discussion
of the post-processed cases 1 (QQT) and 2 (conditional
corrections LIN and LOG).

Correlation coefficients are very similar across cases
and are mentioned in the text but not shown in tables or
plots. Verification results are plotted in a series of multi-
panel figures, showing RME, BSS, CRPSS and ROCS for
the forecasts with lead times of 24-hours, 120-hours and
240-hours. The metrics are plotted as a function of the
value of the verifying observation, expressed as a climato-
logical probability of non-exceedence P , to allow for com-
parison across different locations. Most figures show re-

sults for multiple locations: thick lines indicate median
values and thin lines denote the 10% and 90% quantiles of
metrics over those multiple locations. Metrics pertaining
to streamflow ensemble forecasts are shown across several
plots, each corresponding to a spatial scale defined in Sec-
tion 2.2. Note that, for ease of interpretation, all skill
scores and associated decompositions are oriented to show
the “best” scores at the top of the range axis and the
“worst” at the bottom (Figure 3).

3.1. Ensemble temperature forecasts

Verification metrics for the ensemble temperature fore-
casts are shown in Figure 4. The metrics indicate that
forecast quality decreases with increasing lead time, that
it is conditional on the magnitude of the verifying obser-
vation and that this conditionality is more pronounced at
longer lead times. This is true for both raw and post-pro-
cessed temperature ensembles.

3.1.1. Raw temperature ensembles

Raw temperature ensembles show reasonably good cor-
relation with observations. Values for the unconditional
sample (at P = 0) range from 0.99 at the 24-hour lead
time to 0.90 at the 240-hour lead time. At P = 0.95,
these values are 0.87 and 0.18 respectively. Relative Mean
Error plots indicate that for most basins, the ensemble
mean underestimates the observation; this under-forecast-
ing increases with higher values of the verifying observa-
tion. The CRPSS is largely constant, with a small dip in
CRPSS values near to the median observed value. The
BSS and ROCS show similar patterns, different from the
CRPSS; both scores are consistently lowest at the extreme
ends of the distribution.

These patterns reflect the different formulations of the
verification scores and the choice of reference forecast. The
BSS and ROCS measure the quality of discrete predic-
tions, with contributions to the score being dominated by
the corollary (i.e. non-occurrence) at extreme (low and
high) thresholds. At longer lead times, the residual skill
of the temperature forecasts is concentrated towards the
median temperature, where the forecasts have least condi-
tional bias and greatest correlation (and the occurrences
and non-occurrences, by definition, contribute equally). In
contrast, the CRPS is a smooth, continuous measure that
factors skill across all possible thresholds for each paired
sample. Since the sample climatology is unconditional by
construction, the baseline forecasts will be least reliable
in the tails of the climatological distribution, with large
conditional biases contributing to poorer quality of the
reference forecast in the tails (and hence greater relative
quality of the ECMWF forecasts, whether post-processed
or not).

3.1.2. Post-processed temperature ensembles

After post-processing, the correlation of the tempera-
ture ensembles with the verifying observations was virtu-
ally unchanged from the raw case. In terms of RME, BSS,
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CRPSS and ROCS, LIN almost always outperformed QQT
(noting that QQT is a non-linear transform and may not
preserve correlation), which in turn outperformed the raw
ensembles. For the latter three metrics, the differences in
quality are most pronounced at large values of the verify-
ing observation.

3.2. Ensemble precipitation forecasts

Verification metrics for the ensemble precipitation fore-
casts are shown in Figure 5. Subsequent figures show the
calibration-refinement decomposition of the CRPSS (Fig-
ure 7) and the BSS (Figure 8) as well as the likelihood-
base rate decomposition of the BSS (Figure 9). Similar
to the temperature figures, verification metrics are plotted
as a function of observed amount, expressed as a clima-
tological probability of non-exceedence, P . In the case of
precipitation, however, the domain axis range is [0.4, 1.0].
As the probability of precipitation (PoP) is approx. 60%
for all basins, smaller probabilities all correspond to the
PoP threshold of zero preciptiation and produce identical
scores. As in the case of temperature ensembles, forecast
quality is seen to decrease with increasing lead time, and
to be strongly conditional on the amount of precipitation.

3.2.1. Raw ensemble precipitation forecasts

Correlation between the mean of the raw precipita-
tion ensembles and observations is largely positive, but
distinctly lower than that of the temperature ensembles.
Correlation deteriorates with forecast lead time and with
increasing value of the observation. At P = 0, correlation
ranges from 0.71 to 0.13 for lead times of 24-hour and 240-
hours respectively. At P = 0.95, these values are 0.36 and
0.04 respectively.

The RME shows that the ensemble mean overestimates
zero and small precipitation amounts. For increasing val-
ues of the observation, the ensemble mean increasingly un-
derestimates precipitation. For example, at a lead time
of 120 hours, the RME equals 0.07, −0.18 and −0.59 at
P = 0, P = 0.5 and P = 0.9 respectively.

These conditional biases stem from the inability of the
raw predictors used in the post-processor to correctly pre-
dict when large events occur (large relative to other events
in the climatological distribution). This leads to a real-
time adjustment that reflects the assumed, but wrong, con-
ditions. Also, statistical post-processors are calibrated for
good performance under a range of conditions (i.e. for un-
conditional skill and unbiasedness), which inevitably leads
to some conditional biases. In short, some conditional bias
is a “natural” consequence of post-processing with imper-
fect predictors and with a focus on global optimality. How-
ever, it is also a practically significant feature of these and
other post-processed ensemble forecasts. While the precise
description of these conditional biases will depend on the
choice of measure (e.g. the RME is sensitive to skewness),
the conditional biases are present, regardless of the choice
of measure. Figure 6 shows the 120-hour lead time forecast

error as a function of the verifying observation for a single
basin. Clearly, at higher values of the observation, the en-
sembles consistently, and increasingly, underestimate the
observed value, with insufficient spread to offset this con-
ditional bias.

The CRPSS declines with both lead time and increas-
ing amount of observed precipitation. The BSS and ROCS
plots show similar patterns; both metrics are lowest at the
tails, indicating that it is relatively difficult to distinguish
between zero and non-zero precipitation and to correctly
predict the occurrence of large precipitation amounts.

3.2.2. Post-processed precipitation ensembles

When moving from raw to post-processed precipitation
ensembles, the correlation between the ensemble forecast
and the observation is largely conserved. Only in the case
of LOG does correlation drop slightly, and only at higher
precipitation amounts.

Both the QQT and LOG techniques produce ensemble
forecasts that are unconditionally unbiased. However, in
all cases, there is an increasingly large conditional nega-
tive bias at higher precipitation amounts. At longer lead
times, the RME across all cases is very similar. The raw
ensembles initially show a small positive RME, which at
some value of P becomes negative and then continues to
drop. For non-zero precipitation, LOG shows the highest
negative RME at all lead times. From Figure 6, it is clear
that the post-processing methods were unable to correct
for the Type-II conditional biases at high observed precip-
itation amounts.

For both techniques, the gain in CRPSS following post-
processing is only modest or marginal at all lead times and
precipitation amounts. In terms of unconditional CRPSS
(P = 0), LOG shows the highest increase in skill at all lead
times. At higher observed precipitation amounts, LOG
does markedly worse than the raw and QQT ensembles due
to a large, negative, conditional bias in the ensemble mean.
The CRPSS of the QQT corrected ensembles are largely
similar to that of the raw ensembles. The CRPSS decom-
position (Figure 7) and the BSS decomposition (Figure 8)
show that none of the post-processing techniques was able
to consistently improve both the reliability and resolution
of the precipitation ensembles. Rather, there is a trade-off
whereby the post-processing generally results in improved
reliability at the expense of some loss in resolution. This
is different from the post-processed temperature ensem-
bles, which showed improved reliability while consistently
maintaining or improving resolution (results not shown).
For precipitation, the combination of lower quality of the
raw forecasts and a larger number of parameters to esti-
mate for LOG leads to greater sampling uncertainty and
weaker performance overall.

In terms of BSS, LOG consistently outperforms the
raw and QQT-post-processed precipitation ensembles. As
indicated in Figure 9, this is largely explained by an in-
crease in the reliability (or reduction in Type-I conditional
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bias) of the precipitation ensembles following LOG. How-
ever, the RME and the likelihood-base-rate decomposition
of the BSS (Figure 10) show a greater tendency of the
LOG ensembles to under-forecast high observed precipita-
tion amounts, i.e. they display a larger Type-II conditional
bias.

3.3. Streamflow ensemble forecasts

Verification results for the streamflow ensembles are
presented for multiple spatial scales. For the 43 head-
water basins, Figure 10 shows RME, CRPSS, BSS and
ROCS values. Figures 11 and 12 show calibration-refine-
ment decompositions of the CRPSS and BSS respectively;
Figure 13 shows the likelihood-base-rate decomposition of
the BSS. The RME, CRPSS, BSS and ROCS values for the
Main, Neckar, Moselle and Swiss Rhine tributaries and for
the Rhine outlet at Lobith are shown in Figures 14 and 15
respectively.

3.3.1. Streamflow ensemble forecasts based on raw forcings

The ensemble mean of the streamflow forecasts is highly
correlated with the simulated streamflow at short lead
times. For example, the correlation exceeds 0.98 at P = 0
and, at P = 0.95, ranges from 0.90 to 0.98 to 0.99 for the
smallest to largest spatial scales, respectively. Generally,
correlation reduces with decreasing spatial scale: it is low-
est for the collection of headwater basins and highest at
the outlet, where the aggregate response has a modulating
effect on the errors from individual basins. Correlation de-
clines with increasing lead time and with increasing value
of the streamflow simulation.

At all spatial scales, the unconditional RME is negligi-
ble at the earliest lead times, but increases with increasing
lead time. For streamflows larger than the median clima-
tological flow, the forecast ensemble mean increasingly un-
derestimates the simulated streamflow. For example, the
RME for the headwater basins (Figure 10) at a lead time
of 120 hours shows a median RME of −0.07, −0.20 and
−0.27 at P = 0.5, P = 0.9 and P = 0.95 respectively. At
the outlet at Lobith (Figure 15) the corresponding values
are −0.001, −0.02 and −0.03 respectively.

The patterns in BSS, CRPSS and ROCS are similar to
one another and across all spatial scales and lead times.
The skill is greatest for the unconditional flows at the
shortest lead times and declines with increasing value of
the verifying simulation, particularly above the median
climatological streamflow where the conditional bias in-
creases. The skill also increases with increasing spatial
scale. For example, the median CRPSS values at P = 0.90
at a lead time of 120-hours are 0.54, 0.73 and 0.90 for head-
waters, tributaries and outlet respectively.

3.3.2. Streamflow ensembles based on post-processed forc-
ings

Correlations between the simulated streamflow and the
forecast ensemble means are hardly affected by post-pro-
cessing of the forcings. A slight reduction is observed at

longer lead times and at higher quantiles of the simulation
for the LIN-LOG case. At P = 0.90 and a 240-hour lead
time, correlation drops from 0.34 for the raw case to 0.31
for the LIN-LOG case.

Unconditionally, the combinations of QQT-QQT and
LIN-LOG result in RME values that are closer to 0 than
those of the RAW-RAW case. However, there is a tendency
for all techniques to under-forecast the higher simulated
streamflows, with the greatest conditional bias for the LIN-
LOG case. For example, in the LIN-LOG case at a lead
time of 120 hours, the median RME for the four main
tributaries increases (negatively) from −0.04 at P = 0.50
to −0.15 at P = 0.90 and −0.19 at P = 0.95 (Figure 14).

In terms of the BSS, CRPSS and ROCS, the streamflow
ensembles derived from quantile-to-quantile transformed
forcings generally show higher skill than those derived from
raw forcings. However, the differences are small. The
QQT-QQT ensembles show similar skill at low and mod-
erate values of the verifying simulation only, since QQT is
unable to correct for conditional biases, whether Type-I or
Type-II in nature.

Generally, post-processing of the forcing variables us-
ing conditional techniques (LIN-LOG) does not result in
increased skill in terms of CRPSS and BSS. Below the
median climatological streamflow, skills are largely sim-
ilar to those of streamflow ensembles derived from raw
forcings. At higher quantiles, there is actually a small de-
crease of skill. An increase of skill is observed in terms
of the reliability component of the BSS and in terms of
the ROCS; that is, in the ability of the forecasts to dis-
criminate between the occurrence and non-occurrence of
discrete events.

4. Discussion

Several questions were posed in this case study: are the
raw ECMWF-EPS temperature and precipitation ensem-
bles biased and if so, how? Do these biases translate into
streamflow biases and reduced skill? Does post-processing
of the temperature and precipitation ensembles improve
the quality of the forcing ensembles, and is this improve-
ment noticeable in the streamflow ensembles?

The raw temperature and precipitation ensemble fore-
casts are biased in both the mean and spread. However,
they are more skilful than sample climatology for shorter
lead times and moderate thresholds, with reduced skill at
longer lead times and for larger amounts (and for zero
precipitation). The temperature ensemble forecasts are
less biased and more skilful than the precipitation ensem-
ble forecasts. The effects of these biases on the stream-
flow ensemble forecasts depend on the concentration time
of the basins considered with a more rapid deterioration
with leadtime in skill for headwaters than for downstream
basins. This is largely due to the absence of hydrologic bi-
ases and uncertainties in the verification results, of which
those in the initial conditions are an important part (i.e.
verification was conducted against simulated streamflow).
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Thus, the skill of streamflow predictions is strongly af-
fected by the initial conditions; this effect lasts longer in
larger basins.

Overall, the improvements in the ensemble forcing pre-
dictions were modest; this was especially the case for the
precipitation ensembles. However, this does not imply that
the forcing ensembles are nearly perfect. Rather, it sug-
gests that no additional signal can be found in the fore-
cast-observed residuals to improve forecast quality with
the statistical techniques considered. In some cases, post-
processing reduces skill; it attempts to use a signal that,
in hindsight, turns out to be noise with no predictive in-
formation for future forecasts.

Post-processing of the temperature ensembles resulted
in greater improvements than post-processing of the pre-
cipitation ensembles. This is not surprising, because tem-
peratures are relatively more predictable than precipita-
tion and the gain in skill from post-processing (with a
conditional technique) partly depends on the strength of
association between the forecasts and observations. Much
of the improvement in the precipitation ensemble forecasts
is unconditional in nature. Possibly, the improvements
from conditional post-processing would be greater when
calibrating on a larger dataset, as there were only v 2,900
pairs available in this study, when using a more parsimo-
nious statistical technique (e.g. Wu et al., 2011) or when
supplementing the training data set at a particular loca-
tion with data from other locations with similar climatolo-
gies (Hamill et al., 2008).

Application of the forcing post-processors generally re-
sults in a reduction in bias and an improvement in skill
of the forcing ensembles, although the precise effects de-
pend on forecast lead time, threshold, spatial scale and the
types of bias considered. For example, while LOG gener-
ally improves the reliability of the precipitation ensembles,
the ensemble mean is negatively biased with increasing
observed precipitation amount, i.e. a Type-II conditional
bias. Post-processing does not improve on all qualities at
all lead times and at all levels of the verifying observation.
Generally, but not always, post-processing improves the
reliability of the forecasts, but this is sometimes accompa-
nied by a loss of resolution or an increase in the Type-II
conditional biases.

Changes in the biases and skill of the forcing ensembles
cascade to the ensemble streamflow forecasts. No combina-
tion of techniques improves all forecast qualities considered
at all lead times and all levels of the verifying simulation.
A reduction in the unconditional bias and in the reliability
of the ensemble precipitation forecasts is followed by im-
provements in the reliability of the streamflow ensemble
forecasts. However, the trade-off between reliability and
resolution is also observed in the streamflow predictions.

The improvements in precipitation and temperature do
not translate proportionally into the streamflow forecasts.
This may be partly explained by the strong non-linearity
of the Rhine basin (due to substantial storage of water in
the subsurface, in extensive snowpacks and, to a lesser de-

gree, in reservoirs) and, accordingly, the hydrologic model.
Possibly, the effects of post-processing would be stronger
in basins where streamflow has a more linear response to
forcing variables, e.g. in basins with less storage ,or when
leadtimes are sufficiently long to allow for the stored water
to reach the streamflow network. This may explain why
Yuan and Wood (2012) found that in their seasonal fore-
casting case, post-processing of forcings leads to a more
noticeable improvement of streamflow forecast skill than
was found in the case described in the present manuscript.

Another potential cause of muted signal resulting from
the forcing bias-correction may also be explained by in-
adequate modelling of the space-time covariability of the
forcing forecasts. Forcing verification (as presented here,
but more generally) is sensitive to the joint distribution of
the forecasts and observations at specific times, locations
and for specific variables. In contrast, hydrologic models
are sensitive to the space-time covariability of the forcing
forecasts. In this context, the use of the Schaake shuf-
fle to recover some of this space-time covariability may
be limiting. The Schaake shuffle introduces rank associa-
tion only, and it introduces this only insofar as these pat-
terns appear historically on the same or nearby dates. For
example, it cannot account for more complex statistical
dependencies, novel structures, or structures that are con-
ditional upon the state of the atmosphere at the forecast
issue time. These weaknesses are likely exaggerated when
the forecasts have greater spread because the Schaake shuf-
fle has greater scope to affect the space-time patterns of
the ensemble traces. In order to account for more complex
structures, post-processors with explicit models of space-
time covariability are needed, such as geostatistical models
(Kleiber et al., 2011), together with parsimonious verifica-
tion techniques that are sensitive to these space-time and
cross-variable relationships.

Verification against simulated streamflows allows for
the hydrologic biases to be factored out of the stream-
flow skill associated with forcing post-processing. How-
ever, it also magnifies the resulting streamflow ensemble
skill. When verifying against observations, the overall bi-
ases and uncertainty will be larger due to inclusion of the
hydrologic biases and uncertainties, including those in the
streamflow observations. Relatively speaking, the change
in skill due to the post-processed forcings will be more
difficult to detect.

The research questions posed in the introduction were
addressed by looking at a selection of verification metrics.
While reasonably broad, the results may be sensitive to
the choice of metric. In addition, the parameters of each
post-processing techniques are estimated with a particular
objective function. If these objective functions are similar
to the verification metrics used, it should not be surprising
that a particular technique scores well in terms of that
metric.

The available reforecast dataset allowed for testing our
hypothesis using a reasonable number of retrospective fore-
casts (just over 3,100). Conditional verification however,
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especially of extreme events, quickly reduces the size of the
subsample. In this study, the cut-off of the climatological
nonexceedence probability was chosen at P = 0.99, which
is where 1% of the available data is used for verification.
This coincides with approx. 30 data pairs. If the present
study would be repeated and extended by stratifications,
for example on a two season basis, then the P = 0.99
quantile would equate to approx. 15 verification pairs,
which is deemed too small for verification purposes. Con-
versely, if, in case of stratification, the minimum number
of pairs would be kept fixed at 30, this would mean that
less extreme events can be analysed only. Ideally, longer
sets of reforecasts (hindcasts) would be available. Note
that by the time the present manuscript was submitted
for publication, the ECMWF reforecast set had been ex-
tended considerably. Even so, the authors support the call
for reforecast datasets, eloquently voiced by Hamill et al.
(2006).

In the current study, the improvements to streamflow
accrued by post-processing of the forcing predictions were
modest. Moreover, these effects may be negligible when
verifying against streamflow observations. Since forcing
post-processing is both labour intensive and inherently
difficult for precipitation, particularly in accounting for
appropriate space-time covariability, it is worth consider-
ing other methods to improve the skill of the forcing and
streamflow ensembles, such as multi-model combinations,
data assimilation (to improve the hydrologic initial condi-
tions), and streamflow post-processing. For example, un-
der conditions where forcing post-processing contributes
significant skill to streamflow, it needs to be established
whether that skill remains after streamflow post-process-
ing or whether statistical post-processing can adequately
remove the forcing biases via the streamflow, despite the
aggregation of multiple sources of bias and uncertainty.

5. Summary and conclusions

Ensemble forecasts of temperature and precipitation
were tested for biases and an attempt was made to reduce
these biases through statistical post-processing. This re-
sulted in modest improvements in the quality of the forc-
ing ensembles. The effects on streamflow were explored by
factoring out the effects of bias in the hydrologic model;
that is, by verifying against simulated streamflow. In gen-
eral, the improvements in streamflow quality were muted
at all spatial scales considered, with explanations includ-
ing a limited model of the space-time covariability of the
forcing ensembles.
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AppendixA. Post-processing techniques

AppendixA.1. Quantile-to-quantile transform

The quantile-to-quantile transform, also known as quan-
tile mapping or cdf matching, is given by

xqqt,c = F̄−1
Y

(
F̄Xc (xc)

)
, (A.1)

where F̄Y denotes the sample climatology of the predic-
tand Y , or the empirical distribution of observations, F̄Xc

denotes the sample climatology of the predictor Xc and
xqqt,c represents the quantile-to-quantile transformed pre-
diction for the cth member of the C–member forcing en-
semble. Thus, the transform is applied to each of the C
members and their C separate, but practically identical,
climatologies. In general, xqqt,c will not map linearly to
xc, because the curvatures of F̄Y and F̄Xc

are different.

AppendixA.2. Linear regression

Given a training data set, a simple linear regression
relation is assumed to exist between observed temperature
and the mean of the ensemble prediction (Wilks, 2006),

Y = β0 + β1X̄ + ε, (A.2)

where β0 and β1 are regression parameters to estimate and
ε is a stochastic residual. This relation is sought for each
location and lead time separately but subscripts denoting
these are omitted from Equation A.2. The regression co-
efficients are found by minimising the expected square dif-
ference between the temperatures predicted by the model
and observed. The regression constants are determined for
each lead time and location separately.

The residuals are assumed to be Normally distributed
with zero mean, µ,

ε = N (µ = 0, σ) , (A.3)

and σ given by the sample standard deviation of errors.
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From this regression equation, probabilistic tempera-
ture forecasts are produced for a given value of the raw
ensemble mean, x̄, by sampling from N (β0 + β1x̄, σ).

AppendixA.3. Logistic regression

The conditional probability that the future amount of
precipitation, Y , does not exceed a discrete threshold, y,
given the raw ensemble mean, x̄, is

P
(
Y ≤ y|X̄ = x̄

)
=

1.0

1.0 + exp−(β0+β1x̄1/3)
, (A.4)

where β0 and β1 are the parameters of the linear model to
estimate through maximum likelihood. The power trans-
formation has the effect of allowing the precipitation fore-
cast data to be more normally distributed (Hamill et al.,
2008). Similar to the experiment described in Sloughter
et al. (2007), a one-third power transformation is used.
Here, 200 thresholds are considered. The thresholds are
then interpolated using a spline constrained to be a valid
cumulative distribution function using the method described
by He and Ng (1999).

AppendixB. Verification metrics

For ease of reference, the probabilistic verification met-
rics used in this study are briefly explained; this descrip-
tion is based on Brown and Seo (2013). Further details
can be found in the documentation of the Ensemble Veri-
fication System (Brown et al., 2010) as well as in reference
works on forecast verification by Jolliffe and Stephenson
(2012) and Wilks (2006).

AppendixB.1. Relative Mean Error

The Relative Mean Error (RME, sometimes called rel-
ative bias) measures the average difference between a set
of forecasts and corresponding observations, relative to the
mean of the latter,

RME =

∑n
i=1

(
xi − Ȳi

)∑n
i=1 xi

, (B.1)

where x is the observation and Ȳ is the mean of the en-
semble forecast. The RME thus provides a measure of
relative, first-order bias in the forecasts. RME may be
positive, zero, or negative. Insofar as the mean of the en-
semble forecast should match the observed value, a positive
RME denotes overforecasting and a negative RME denotes
underforecasting. A RME of zero denotes the absence of
relative bias in the mean of the ensemble forecast.

AppendixB.2. Brier score and Brier skill score

The (half) Brier score (BS) measures the mean square
error of n predicted probabilities that Q exceeds q,

BS =
1

n

n∑
i=1

{FXi
(q)− FYi

(q)}2, (B.2)

where FXi (q) = Pr [Xi > q] and FYi (q) =

{
1 if Yi > q;
0 otherwise

.

By conditioning on the predicted probability, and parti-
tioning over J discrete categories, the BS is decomposed
into the calibration-refinement (CR) measures of Type-I
conditional bias or reliability (REL), resolution (RES) and
uncertainty (UNC),

BS =
1

n

J∑
j=1

Nj{FXj (q)− F̄Yj (q)}2︸ ︷︷ ︸
REL

− 1

n

J∑
j=1

Nj{FYj (q)− F̄Y (q)}2︸ ︷︷ ︸
RES

+σ2
Y (q)︸ ︷︷ ︸
UNC

. (B.3)

Here, F̄Y (q) represents the average relative frequency
(ARF) with which the observation exceeds the threshold,
q. The term FYj (q) represents the conditional observed
ARF, given that the predicted probability falls within the
jth of J probability categories, which happens Nj times.
Normalizing by the climatological variance UNC, σ2

Y (q),
leads to the Brier Skill Score (BSS),

BSS = 1− BS

UNC
=

RES

UNC
− REL

UNC
. (B.4)

By conditioning on the K = 2 two possible observed
outcomes, {0, 1}, the BS is decomposed into the likelihood-
base-rate (LBR) measures of Type-II conditional bias (TP2),
discrimination (DIS), and sharpness (SHA),

BS =
1

n

K∑
k=1

Nk
{
F̄Xk

(q)− F̄Yk
(q)
}2

︸ ︷︷ ︸
TP2

− 1

n

K∑
k=1

Nk
{
FXk

(q)− F̄X (q)
}2

︸ ︷︷ ︸
DIS

+σ2
X (q)︸ ︷︷ ︸
SHA

. (B.5)

Here, F̄Xk
(q) represents the average probability with

which X is predicted to exceed q, given that Y exceeds
q (k = 1) or does not exceed q (k = 2), where Nk is the
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conditional sample size for each case. The BSS is then
given by

BSS = 1− BS

UNC

= 1− TP2

UNC
+

DIS

UNC
− SHA

UNC
. (B.6)

AppendixB.3. Mean Continuous Ranked Probability Score
and Skill Score

The Continuous Ranked Probability Score (CRPS) mea-
sures the integral square difference between the cumulative
distribution function (cdf) of the forecast FX (q), and the
corresponding cdf of the observed variable FY (q),

CRPS =

∫ ∞
−∞
{FX (q)− FY (q)} dq. (B.7)

The mean CRPS comprises the CRPS averaged across
n pairs of forecasts and observations. The Continuous
Ranked Probability Skill Score (CRPSS) is a ratio of the
mean CRPS of the main prediction system, CRPS, and a
reference system, CRPSref ,

CRPSS =
CRPSref − CRPS

CRPSref

. (B.8)

AppendixB.4. Relative Operating Characteristic score

The Relative Operating Characteristic (ROC; Green
and Swets 1966) measures the trade-off between correctly
forecasting that a discrete event will occur (Probability
of Detection, PoD) and incorrectly forecasting that it will
occur (Probability of False Detection, PoFD). This trade-
off is expressed as a decision threshold, d, at which the
forecast probability triggers some action. The ROC plots
the PoD versus the PoFD for all possible values of d in
[0, 1]. For a particular threshold, the empirical PoD is

PoD =

∑n
i=1 IXi (FXi (q) > d|Yi > q)∑n

i=1 IYi
(Yi > q)

, (B.9)

where I denotes the indicator function. The empirical
PoFD is

PoFD =

∑n
i=1 IXi (FXi (q) > d|Yi > q)∑n

i=1 IYi (Yi ≤ q)
. (B.10)

The ROC score measures the area under the ROC
curve (AUC) after adjusting for the climatological base
rate, i.e.

ROCS = 2× (AUC− 0.5) . (B.11)
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Figure 1: Location of the Rhine basin in continental Europe.

Contributing area
[
km2

]
Spatial Scale #constituents 10th perc median 90th perc mean sum
Headwater basins 43 370 929 2,008 1,142 49,125
Tributaries 4 17,972 27,767 34,035 26,507 106,029
Rhine basin 1 159,559

Table 1: Contributing areas of the spatial scales that are analysed.

Temperature correction Precipitation correction
Baseline case none (RAW) none (RAW)
Case 1 quantile-to-quantile transform (QQT) quantile-to-quantile transform (QQT)
Case 1 linear regression (LIN) logistic regression (LOG)

Table 2: Overview of cases.
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Figure 4: RME, CRPSS, BSS and ROCS for ensemble temperature forecasts at 24-hour, 120-hour and 240-hour ahead forecasts. For CRPSS,
BSS and ROCS, the baseline is formed by sample climatology. The results pertain to 134 basins: solid lines show the median value; dashed
lines show the 0.10 and 0.90 quantiles.
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Figure 5: RME, CRPSS, BSS and ROCS for ensemble precipitation forecasts at 24-hour, 120-hour and 240-hour ahead forecasts. For CRPSS,
BSS and ROCS, the baseline is formed by sample climatology. The results pertain to 134 basins: solid lines show the median value; dashed
lines show the 0.10 and 0.90 quantiles.
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Figure 7: CRPSS calibration-refinement decomposition for ensemble precipitation forecasts at 24-hour, 120-hour and 240-hour ahead forecasts.
The baseline is formed by sample climatology. The results pertain to 134 basins: solid lines show the median value; dashed lines show the
0.10 and 0.90 quantiles.
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Figure 8: BSS calibration-refinement (Type I) decomposition for ensemble precipitation forecasts at 24-hour, 120-hour and 240-hour ahead
forecasts. The baseline is formed by sample climatology. The results pertain to 134 basins: solid lines show the median value; dashed lines
show the 0.10 and 0.90 quantiles.
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Figure 9: BSS likelihood-base rate (Type II) decomposition for ensemble precipitation forecasts at 24-hour, 120-hour and 240-hour ahead
forecasts. The baseline is formed by sample climatology. The results pertain to 134 basins: solid lines show the median value; dashed lines
show the 0.10 and 0.90 quantiles.
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Figure 10: RME, CRPSS, BSS and ROCS for ensemble streamflow forecasts for the headwater basins at 24-hour, 120-hour and 240-hour lead
times. For CRPSS, BSS and ROCS, the baseline is formed by sample climatology. The results pertain to 43 locations: solid lines show the
median value; dashed lines show the 0.10 and 0.90 quantiles.
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Figure 11: CRPSS calibration-refinement decomposition for ensemble streamflow forecasts for the headwater basins at 24-hour, 120-hour and
240-hour lead times. The baseline is formed by sample climatology. The results pertain to 43 locations: solid lines show the median value;
dashed lines show the 0.10 and 0.90 quantiles.
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Figure 12: BSS calibration-refinement (Type I) decomposition for ensemble streamflow forecasts for the headwater basins at 24-hour, 120-hour
and 240-hour lead times. The baseline is formed by sample climatology. The results pertain to 43 locations: solid lines show the median
value; dashed lines show the 0.10 and 0.90 quantiles.
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Figure 13: BSS likelihood-base rate (Type II) decomposition for ensemble streamflow forecasts for the headwater basins at 24-hour, 120-hour
and 240-hour lead times. The baseline is formed by sample climatology. The results pertain to 43 locations: solid lines show the median
value; dashed lines show the 0.10 and 0.90 quantiles.
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Figure 14: RME, CRPSS, BSS and ROCS for ensemble streamflow forecasts for the four main tributaries at 24-hour, 120-hour and 240-hour
lead times. For CRPSS, BSS and ROCS, the baseline is formed by sample climatology. The results pertain to 4 locations: solid lines show
the (interpolated) median value; dashed lines show the (interpolated) 0.10 and 0.90 quantiles.
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Figure 15: RME, CRPSS, BSS and ROCS for ensemble streamflow forecasts for the outlet at Lobith at 24-hour, 120-hour and 240-hour lead
times. For CRPSS, BSS and ROCS, the baseline is formed by sample climatology.
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