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Note: most of this is based on the slides downloaded from http://www.ce.utexas.edu/prof/maidment /
CE374KSpring2011/Visual /HydrologicRouting.pptx

Introduction

Muskingum routing is a relatively simple form of hydrologic or lumped routing which is governed by the
continuity equation (mass and, assuming constant density, volume) and a flow—storage relationship. Note
that hydraulic or dynamic routing equations are governed by equations of continuity and momentum.

Governing equations

Continuity equation of mass and volume:

ds
C=I1)-Q (1)

Flow, storage relationship, assuming a linear reservoir:

S =kQ (2)
Combining equations 1 and 2 yields:
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This shows that the outflow hydrograph @ (t) can be expressed as a function of the inflow hydrograph
I(t).

Storage in a reach

Total reach storage comprises prism and wedge storages and is thus calculated using values of inflow I
and outflow @ (thus eliminating one unknown!):

Sprism = kQ (4)

chdgc =k (I - Q) (5)

Total storage S is then calculated as follows:
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S = Sprism + Swedge

= kQ+axk(I-Q)
= k(Q@+z(I-Q))
= k(Q+zl—2Q)
= k(zl+Q —2Q)
= k(zI+(1-2)Q)

Discretization of equations

Discretizing the equation 6 (storage) yields:
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Note that in the last step, the terms are ordered: Q4+ first, then I;4 followed by I; and Q5. We also

discretize the equation 1 (the continuity equation, or mass/volume balance):
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Note that here, too, the terms are ordered in the last step: (i1 first, then I;4; followed by I; and Q.

Finally, equations 7 and 8 are combined and the items containing @11 are transferred to the left:

1 1 1 1
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This can be rewritten:

Qj+1 = Crlj11 + CoI; + C3Q;

where

o — At — 2kx
2k (1 — z) + At
Cy = At + 2kz
2k(1 —x) + At
o — 2k (1 —xz) — At
ST 2k(l—a2)+ At

Note that the denominator is identical across all three equations.
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Example

Given:

o the inflow hydrograph I (t) (see below);

e k= 2.3 hours;
o z=0.15[-];
e At =1 hour;

o initial flow Q (t = 1) = 85 cfs.
I <- c(93,137,208,320,442,546,630,678,691,675,634,571,477,390,329,247,184,134,108,90)

Q <- vector("numeric",length=length(I)); Q[1] <- 85; Q[2:length(Q)] <- NA
k <- 2.3; x <- 0.15; dt <- 1

The inflow hydrograph then looks like:
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Constants C; through C3 are calculated as follows:

C1 <- (dt-2xkx*x)/(2xk*(1-x)+dt)
C2 <— (dt+2xkx*x)/(2xk*(1-x)+dt)
C3 <- (2xk*(1-x)-dt)/(2xk*(1-x)+dt)

which yields the following values, respectively:

## [1] 0.06313646

## [1] 0.3441955

## [1] 0.592668

Note that the sum of these constants should equal 1:
C1+C2+C3

## [1] 1

Then we calculate the components of equation 10:



for (¢t in 1:(length(I)-1)) {
QLt+1] <- C1xI[t+1] + C2*I[t] + C3*Q[t]
}

which we then show graphically:
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Solution using linear algebra!

We can re-write the Muskingum equation Qi1 = C1lj41 + Colj + C3Q5 or Q5 = C1I; + Calj1 + C3Q5-1
using matrices and vectors:

Q1 0O 0 0 -+ 0 07/Ia 1 0 0 --- 0 0] [Qu
Qr2 c2 C1 0 - 0 0] |Le C3 0 0 -+ 0 0| Qw2
th — 0 c2 (1 0 0 Itg + 0 c3 o --- 0 0 th (12)
Qr 0o 0 0 --- C2 C1| |Ir 0 0 0 --- C3 0| |Qr
which we’ll simplify:
G =DI+ AQ (13)

Note that f, Q+1 and all values of C'1, C2 and C'3 are known. We need to solve equation 13 for ); with
t > t1. We'll do this by re-writing slightly as to allow solvers to find their answers quickly:

—DIi=(A-E)

QL

(14)

with E being the identity matrix (usually denoted as I but as this variable was already taken, using the
Dutch notation E).

Implementation in R

First, the matrices A and D have to be constructed. Matrix D has two patterns that are very diagonal-like,
but not quite. However, I have used the diag() function to construct the matrix — in two steps:

IMany thanks to Jorn Baayen at Deltares for help in constructing Muskingum as a linear algebra problem.


https://www.deltares.nl/en/contactperson/jorn-baayen/

T <- length(I)

D1 <- matrix(data=0, nrow=T,ncol=T); D2 <- D1
D1[2:T,2:T]  <- diag(T-1,x=C1)

D2[2:T,1:T-1] <- diag(T-1,x=C2)

D <- D1+D2; rm(D1,D2)

Likewise for matrix /:1:

A <- matrix(data=0,nrow=T,ncol=T)
A[2:T,1:T-1] <- diag(T-1,x=C3)

The function solve() will be used to solve the equation Az = b for z. First, a and b are constructed (the
reason for this is that an initial value will need to be imposed on b).

a <- A-diag(T); b <- -D%*%I

The Muskingum problem is an initial value problem. Hence, I am changing the first equation to be solved
in such a way that it immediately knows the value of outlow at the first time step. There may be a more
elegant way to do this, but I am not aware of it.

b[1] <- -Q[1]

After that, the matrix system can be actually solved:

q <- solve(a=a,b=b)

And a comparison between @ (calculated by a loop) and ¢ (calculated using matrix algebra) reveals
identical values. While I was hoping that the linear algebra approach would be a lot faster, the converse
was true: for large timeseries (~10,000 values), the matrix approach was approx. 7,000 times slower!
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