
Muskingum routing: theory, example and a brief
venture into linear algebra

Jan Verkade
December 11, 2016

Note: most of this is based on the slides downloaded from http://www.ce.utexas.edu/prof/maidment/
CE374KSpring2011/Visual/HydrologicRouting.pptx

Introduction

Muskingum routing is a relatively simple form of hydrologic or lumped routing which is governed by the
continuity equation (mass and, assuming constant density, volume) and a flow–storage relationship. Note
that hydraulic or dynamic routing equations are governed by equations of continuity and momentum.

Governing equations

Continuity equation of mass and volume:

dS

dt
= I (t)−Q (t) (1)

Flow, storage relationship, assuming a linear reservoir:

S = kQ (2)

Combining equations 1 and 2 yields:

dS

dt
= I (t)−Q (t)

d (kQ)
dt

= I (t)−Q (t)

k
dQ

dt
+ Q (t) = I (t) (3)

This shows that the outflow hydrograph Q (t) can be expressed as a function of the inflow hydrograph
I (t).

Storage in a reach

Total reach storage comprises prism and wedge storages and is thus calculated using values of inflow I
and outflow Q (thus eliminating one unknown!):

Sprism = kQ (4)

Swedge = xk (I −Q) (5)

Total storage S is then calculated as follows:

1

 http://www.ce.utexas.edu/prof/maidment/CE374KSpring2011/Visual/HydrologicRouting.pptx
 http://www.ce.utexas.edu/prof/maidment/CE374KSpring2011/Visual/HydrologicRouting.pptx

S = Sprism + Swedge

= kQ + xk (I −Q)
= k (Q + x (I −Q))
= k (Q + xI − xQ)
= k (xI + Q− xQ)
= k (xI + (1− x) Q) (6)

Discretization of equations

Discretizing the equation 6 (storage) yields:

Sj+1 − Sj = k [xI + (1− x) Q]j+1 − k [xI + (1− x) Q]j
= k{[xIj+1 + (1− x) Qj+1]− [xIj + (1− x) Qj]}
= k (1− x) Qj+1 + kxIj+1 − kxIj − k (1− x) Qj (7)

Note that in the last step, the terms are ordered: Qj+1 first, then Ij+1 followed by Ij and Qj. We also
discretize the equation 1 (the continuity equation, or mass/volume balance):

Sj+1 − Sj = Ij+1 − Ij

2 ∆t− Qj+1 −Qj

2 ∆t

= 1
2∆t (Ij+1 − Ij)−

1
2∆t (Qj+1 −Qj)

= −1
2∆tQj+1 + 1

2∆tIj+1 −
1
2∆tIj + 1

2∆tQj (8)

Note that here, too, the terms are ordered in the last step: Qj+1 first, then Ij+1 followed by Ij and Qj.
Finally, equations 7 and 8 are combined and the items containing Qj+1 are transferred to the left:

k (1− x) Qj+1 + kxIj+1 − kxIj − k (1− x) Qj = −1
2∆tQj+1 + 1

2∆tIj+1 −
1
2∆tIj + 1

2∆tQj

k (1− x) Qj+1 + 1
2∆tQj+1 = −kxIj+1 + 1

2∆tIj+1 + kxIj −
1
2∆tIj + k (1− x) Qj + 1

2∆tQj

Qj+1

[
k (1− x) + 1

2∆t

]
= Ij+1

[
1
2∆t− kx

]
+ Ij

[
kx− 1

2∆t

]
+ Qj

[
k (1− x) + 1

2∆t

]
(9)

This can be rewritten:

Qj+1 = C1Ij+1 + C2Ij + C3Qj (10)

where

C1 = ∆t− 2kx

2k (1− x) + ∆t

C2 = ∆t + 2kx

2k (1− x) + ∆t

C3 = 2k (1− x)−∆t

2k (1− x) + ∆t
(11)

Note that the denominator is identical across all three equations.

2

Example

Given:

• the inflow hydrograph I (t) (see below);

• k = 2.3 hours;

• x = 0.15 [−];

• ∆t = 1 hour;

• initial flow Q (t = 1) = 85 cfs.

I <- c(93,137,208,320,442,546,630,678,691,675,634,571,477,390,329,247,184,134,108,90)
Q <- vector("numeric",length=length(I)); Q[1] <- 85; Q[2:length(Q)] <- NA
k <- 2.3; x <- 0.15; dt <- 1

The inflow hydrograph then looks like:

0

100

200

300

400

500

600

700

5 10 15 20
time index [−]

F
lo

w
 [c

fs
]

variable I Q

Constants C1 through C3 are calculated as follows:

C1 <- (dt-2*k*x)/(2*k*(1-x)+dt)
C2 <- (dt+2*k*x)/(2*k*(1-x)+dt)
C3 <- (2*k*(1-x)-dt)/(2*k*(1-x)+dt)

which yields the following values, respectively:

[1] 0.06313646

[1] 0.3441955

[1] 0.592668

Note that the sum of these constants should equal 1:

C1+C2+C3

[1] 1

Then we calculate the components of equation 10:

3

for (t in 1:(length(I)-1)) {
Q[t+1] <- C1*I[t+1] + C2*I[t] + C3*Q[t]

}

which we then show graphically:

0

100

200

300

400

500

600

700

5 10 15 20
time index [−]

F
lo

w
 [c

fs
]

variable I Q

Solution using linear algebra1

We can re-write the Muskingum equation Qj+1 = C1Ij+1 + C2Ij + C3Qj or Qj = C1Ij + C2Ij-1 + C3Qj-1
using matrices and vectors:


Qt1
Qt2
Qt3
...

QT

 =


0 0 0 · · · 0 0

C2 C1 0 · · · 0 0
0 C2 C1 · · · 0 0
...

...
...

...
0 0 0 · · · C2 C1




It1
It2
It3
...

IT

+


1 0 0 · · · 0 0

C3 0 0 · · · 0 0
0 C3 0 · · · 0 0
...

...
...

...
0 0 0 · · · C3 0




Qt1
Qt2
Qt3
...

QT

 (12)

which we’ll simplify:

~Q = ¯̄D~I + ¯̄A ~Q (13)

Note that ~I, Qt1 and all values of C1, C2 and C3 are known. We need to solve equation 13 for Qt with
t > t1. We’ll do this by re-writing slightly as to allow solvers to find their answers quickly:

− ¯̄D~I = (¯̄A− ¯̄E) ~Q (14)

with ¯̄E being the identity matrix (usually denoted as ¯̄I but as this variable was already taken, using the
Dutch notation ¯̄E).

Implementation in R

First, the matrices ¯̄A and ¯̄D have to be constructed. Matrix ¯̄D has two patterns that are very diagonal-like,
but not quite. However, I have used the diag() function to construct the matrix – in two steps:

1Many thanks to Jorn Baayen at Deltares for help in constructing Muskingum as a linear algebra problem.

4

https://www.deltares.nl/en/contactperson/jorn-baayen/

T <- length(I)
D1 <- matrix(data=0, nrow=T,ncol=T); D2 <- D1
D1[2:T,2:T] <- diag(T-1,x=C1)
D2[2:T,1:T-1] <- diag(T-1,x=C2)
D <- D1+D2; rm(D1,D2)

Likewise for matrix ¯̄A:

A <- matrix(data=0,nrow=T,ncol=T)
A[2:T,1:T-1] <- diag(T-1,x=C3)

The function solve() will be used to solve the equation Ax = b for x. First, a and b are constructed (the
reason for this is that an initial value will need to be imposed on b).

a <- A-diag(T); b <- -D%*%I

The Muskingum problem is an initial value problem. Hence, I am changing the first equation to be solved
in such a way that it immediately knows the value of outlow at the first time step. There may be a more
elegant way to do this, but I am not aware of it.

b[1] <- -Q[1]

After that, the matrix system can be actually solved:

q <- solve(a=a,b=b)

And a comparison between Q (calculated by a loop) and q (calculated using matrix algebra) reveals
identical values. While I was hoping that the linear algebra approach would be a lot faster, the converse
was true: for large timeseries (~10,000 values), the matrix approach was approx. 7,000 times slower!

5

	Introduction
	Governing equations
	Storage in a reach
	Discretization of equations
	Example
	Solution using linear algebra
	Implementation in R

