Muskingum routing: theory, example and a brief venture into linear algebra

Jan Verkade

December 11, 2016

Note: most of this is based on the slides downloaded from http://www.ce.utexas.edu/prof/maidment/ CE374KSpring2011/Visual/HydrologicRouting.pptx

Introduction

Muskingum routing is a relatively simple form of hydrologic or lumped routing which is governed by the continuity equation (mass and, assuming constant density, volume) and a flow-storage relationship. Note that hydraulic or dynamic routing equations are governed by equations of continuity and momentum.

Governing equations

Continuity equation of mass and volume:

$$
\begin{equation*}
\frac{d S}{d t}=I(t)-Q(t) \tag{1}
\end{equation*}
$$

Flow, storage relationship, assuming a linear reservoir:

$$
\begin{equation*}
S=k Q \tag{2}
\end{equation*}
$$

Combining equations 1 and 2 yields:

$$
\begin{align*}
\frac{d S}{d t} & =I(t)-Q(t) \\
\frac{d(k Q)}{d t} & =I(t)-Q(t) \\
k \frac{d Q}{d t} & +Q(t)=I(t) \tag{3}
\end{align*}
$$

This shows that the outflow hydrograph $Q(t)$ can be expressed as a function of the inflow hydrograph $I(t)$.

Storage in a reach

Total reach storage comprises prism and wedge storages and is thus calculated using values of inflow I and outflow Q (thus eliminating one unknown!):

$$
\begin{gather*}
S_{\mathrm{prism}}=k Q \tag{4}\\
S_{\text {wedge }}=x k(I-Q) \tag{5}
\end{gather*}
$$

Total storage S is then calculated as follows:

$$
\begin{align*}
S & =S_{\text {prism }}+S_{\text {wedge }} \\
& =k Q+x k(I-Q) \\
& =k(Q+x(I-Q)) \\
& =k(Q+x I-x Q) \\
& =k(x I+Q-x Q) \\
& =k(x I+(1-x) Q) \tag{6}
\end{align*}
$$

Discretization of equations

Discretizing the equation 6 (storage) yields:

$$
\begin{align*}
S_{\mathrm{j}+1}-S_{\mathrm{j}} & =k[x I+(1-x) Q]_{\mathrm{j}+1}-k[x I+(1-x) Q]_{\mathrm{j}} \\
& =k\left\{\left[x I_{\mathrm{j}+1}+(1-x) Q_{\mathrm{j}+1}\right]-\left[x I_{\mathrm{j}}+(1-x) Q_{\mathrm{j}}\right]\right\} \\
& =k(1-x) Q_{\mathrm{j}+1}+k x I_{\mathrm{j}+1}-k x I_{\mathrm{j}}-k(1-x) Q_{\mathrm{j}} \tag{7}
\end{align*}
$$

Note that in the last step, the terms are ordered: $Q_{\mathrm{j}+1}$ first, then $I_{\mathrm{j}+1}$ followed by I_{j} and Q_{j}. We also discretize the equation 1 (the continuity equation, or mass/volume balance):

$$
\begin{align*}
S_{\mathrm{j}+1}-S_{\mathrm{j}} & =\frac{I_{\mathrm{j}+1}-I_{\mathrm{j}}}{2} \Delta t-\frac{Q_{\mathrm{j}+1}-Q_{\mathrm{j}}}{2} \Delta t \\
& =\frac{1}{2} \Delta t\left(I_{\mathrm{j}+1}-I_{\mathrm{j}}\right)-\frac{1}{2} \Delta t\left(Q_{\mathrm{j}+1}-Q_{\mathrm{j}}\right) \\
& =-\frac{1}{2} \Delta t Q_{\mathrm{j}+1}+\frac{1}{2} \Delta t I_{\mathrm{j}+1}-\frac{1}{2} \Delta t I_{\mathrm{j}}+\frac{1}{2} \Delta t Q_{\mathrm{j}} \tag{8}
\end{align*}
$$

Note that here, too, the terms are ordered in the last step: $Q_{\mathrm{j}+1}$ first, then $I_{\mathrm{j}+1}$ followed by I_{j} and Q_{j}. Finally, equations 7 and 8 are combined and the items containing Q_{j+1} are transferred to the left:

$$
\begin{array}{r}
k(1-x) Q_{\mathrm{j}+1}+k x I_{\mathrm{j}+1}-k x I_{\mathrm{j}}-k(1-x) Q_{\mathrm{j}}=-\frac{1}{2} \Delta t Q_{\mathrm{j}+1}+\frac{1}{2} \Delta t I_{\mathrm{j}+1}-\frac{1}{2} \Delta t I_{\mathrm{j}}+\frac{1}{2} \Delta t Q_{\mathrm{j}} \\
k(1-x) Q_{\mathrm{j}+1}+\frac{1}{2} \Delta t Q_{\mathrm{j}+1}=-k x I_{\mathrm{j}+1}+\frac{1}{2} \Delta t I_{\mathrm{j}+1}+k x I_{\mathrm{j}}-\frac{1}{2} \Delta t I_{\mathrm{j}}+k(1-x) Q_{\mathrm{j}}+\frac{1}{2} \Delta t Q_{\mathrm{j}} \\
\quad Q_{\mathrm{j}+1}\left[k(1-x)+\frac{1}{2} \Delta t\right]=I_{\mathrm{j}+1}\left[\frac{1}{2} \Delta t-k x\right]+I_{\mathrm{j}}\left[k x-\frac{1}{2} \Delta t\right]+Q_{\mathrm{j}}\left[k(1-x)+\frac{1}{2} \Delta t\right] \tag{9}
\end{array}
$$

This can be rewritten:

$$
\begin{equation*}
Q_{\mathrm{j}+1}=C_{1} I_{\mathrm{j}+1}+C_{2} I_{\mathrm{j}}+C_{3} Q_{\mathrm{j}} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
C_{1} & =\frac{\Delta t-2 k x}{2 k(1-x)+\Delta t} \\
C_{2} & =\frac{\Delta t+2 k x}{2 k(1-x)+\Delta t} \\
C_{3} & =\frac{2 k(1-x)-\Delta t}{2 k(1-x)+\Delta t} \tag{11}
\end{align*}
$$

Note that the denominator is identical across all three equations.

Example

Given:

- the inflow hydrograph $I(t)$ (see below);
- $k=2.3$ hours;
- $x=0.15[-]$;
- $\Delta t=1$ hour;
- initial flow $Q(\mathrm{t}=1)=85 \mathrm{cfs}$.

```
I <- c(93,137,208,320,442,546,630,678,691,675,634,571,477,390,329,247,184,134,108,90)
Q <- vector("numeric",length=length(I)); Q[1] <- 85; Q[2:length(Q)] <- NA
k <- 2.3; x <- 0.15; dt <- 1
```

The inflow hydrograph then looks like:

Constants C_{1} through C_{3} are calculated as follows:

```
C1 <- (dt-2*k*x)/(2*k*(1-x)+dt)
C2 <- (dt+2*k*x)/(2*k*(1-x)+dt)
C3 <- (2*k*(1-x)-dt)/(2*k*(1-x)+dt)
```

which yields the following values, respectively:
\#\# [1] 0.06313646
\#\# [1] 0.3441955
\#\# [1] 0.592668

Note that the sum of these constants should equal 1:

$\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3$
\#\# [1] 1

Then we calculate the components of equation 10:

```
for (t in 1:(length(I)-1)) {
    Q[t+1] <- C1*I[t+1] + C2*I[t] + C3*Q[t]
}
```

which we then show graphically:

Solution using linear algebra ${ }^{1}$

We can re-write the Muskingum equation $Q_{\mathrm{j}+1}=C_{1} I_{\mathrm{j}+1}+C_{2} I_{\mathrm{j}}+C_{3} Q_{\mathrm{j}}$ or $Q_{\mathrm{j}}=C_{1} I_{\mathrm{j}}+C_{2} I_{\mathrm{j}-1}+C_{3} Q_{\mathrm{j}-1}$ using matrices and vectors:

$$
\left[\begin{array}{c}
Q_{\mathrm{t} 1} \tag{12}\\
Q_{\mathrm{t} 2} \\
Q_{\mathrm{t} 3} \\
\vdots \\
Q_{\mathrm{T}}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
C 2 & C 1 & 0 & \cdots & 0 & 0 \\
0 & C 2 & C 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & C 2 & C 1
\end{array}\right]\left[\begin{array}{c}
I_{\mathrm{t} 1} \\
I_{\mathrm{t} 2} \\
I_{\mathrm{t} 3} \\
\vdots \\
I_{\mathrm{T}}
\end{array}\right]+\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
C 3 & 0 & 0 & \cdots & 0 & 0 \\
0 & C 3 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & C 3 & 0
\end{array}\right]\left[\begin{array}{c}
Q_{\mathrm{t} 1} \\
Q_{\mathrm{t} 2} \\
Q_{\mathrm{t} 3} \\
\vdots \\
Q_{\mathrm{T}}
\end{array}\right]
$$

which we'll simplify:

$$
\begin{equation*}
\vec{Q}=\overline{\bar{D}} \vec{I}+\overline{\bar{A}} \vec{Q} \tag{13}
\end{equation*}
$$

Note that $\vec{I}, Q_{\mathrm{t} 1}$ and all values of $C 1, C 2$ and $C 3$ are known. We need to solve equation 13 for Q_{t} with $\mathrm{t}>\mathrm{t} 1$. We'll do this by re-writing slightly as to allow solvers to find their answers quickly:

$$
\begin{equation*}
-\overline{\bar{D}} \vec{I}=(\overline{\bar{A}}-\overline{\bar{E}}) \vec{Q} \tag{14}
\end{equation*}
$$

with $\overline{\bar{E}}$ being the identity matrix (usually denoted as $\overline{\bar{I}}$ but as this variable was already taken, using the Dutch notation $\overline{\bar{E}}$).

Implementation in \mathbf{R}

First, the matrices $\overline{\bar{A}}$ and $\overline{\bar{D}}$ have to be constructed. Matrix $\overline{\bar{D}}$ has two patterns that are very diagonal-like, but not quite. However, I have used the diag() function to construct the matrix - in two steps:

[^0]```
T <- length(I)
D1 <- matrix(data=0, nrow=T,ncol=T); D2 <- D1
D1[2:T,2:T] <- diag(T-1,x=C1)
D2[2:T,1:T-1] <- diag(T-1,x=C2)
D <- D1+D2; rm(D1,D2)
```

Likewise for matrix $\overline{\bar{A}}$ :

```
A <- matrix(data=0,nrow=T,ncol=T)
```

$\mathrm{A}[2: \mathrm{T}, 1: \mathrm{T}-1]<-\operatorname{diag}(\mathrm{T}-1, \mathrm{x}=\mathrm{C} 3)$

The function solve() will be used to solve the equation $A x=b$ for $x$. First, $a$ and $b$ are constructed (the reason for this is that an initial value will need to be imposed on $b$ ).
a <- A-diag(T); b <- -D\% $\% \%$ I

The Muskingum problem is an initial value problem. Hence, I am changing the first equation to be solved in such a way that it immediately knows the value of outlow at the first time step. There may be a more elegant way to do this, but I am not aware of it.
$\mathrm{b}[1]$ <- -Q[1]

After that, the matrix system can be actually solved:
$\mathrm{q}<-\operatorname{solve}(\mathrm{a}=\mathrm{a}, \mathrm{b}=\mathrm{b})$

And a comparison between $Q$ (calculated by a loop) and $q$ (calculated using matrix algebra) reveals identical values. While I was hoping that the linear algebra approach would be a lot faster, the converse was true: for large timeseries ( $\sim 10,000$ values), the matrix approach was approx. 7,000 times slower!


[^0]:    ${ }^{1}$ Many thanks to Jorn Baayen at Deltares for help in constructing Muskingum as a linear algebra problem.

